AI大模型探索之路-训练篇16:大语言模型预训练-微调技术之LoRA

系列篇章💥

AI大模型探索之路-训练篇1:大语言模型微调基础认知
AI大模型探索之路-训练篇2:大语言模型预训练基础认知
AI大模型探索之路-训练篇3:大语言模型全景解读
AI大模型探索之路-训练篇4:大语言模型训练数据集概览
AI大模型探索之路-训练篇5:大语言模型预训练数据准备-词元化
AI大模型探索之路-训练篇6:大语言模型预训练数据准备-预处理
AI大模型探索之路-训练篇7:大语言模型Transformer库之HuggingFace介绍
AI大模型探索之路-训练篇8:大语言模型Transformer库-预训练流程编码体验
AI大模型探索之路-训练篇9:大语言模型Transformer库-Pipeline组件实践
AI大模型探索之路-训练篇10:大语言模型Transformer库-Tokenizer组件实践
AI大模型探索之路-训练篇11:大语言模型Transformer库-Model组件实践
AI大模型探索之路-训练篇12:语言模型Transformer库-Datasets组件实践
AI大模型探索之路-训练篇13:大语言模型Transformer库-Evaluate组件实践
AI大模型探索之路-训练篇14:大语言模型Transformer库-Trainer组件实践
AI大模型探索之路-训练篇15:大语言模型预训练之全量参数微调


目录

  • 系列篇章💥
  • 前言
  • 一、微调技术分类
  • 二、LoRA原理
  • 三、在哪儿增加旁路
  • 四、为什么微调少量参数就可以
  • 五、如何对A和B进行初始化
  • 六、增加旁路会增加推理时间吗?
  • 七、R值为多少合适
  • 八、如何注入LoRA
  • 九、LoRA代码实践
    • 学术资源加速
    • 步骤1 导入相关包
    • 步骤2 加载数据集
    • 步骤3 数据集预处理
    • 步骤4 创建模型
      • 1、PEFT 步骤1 配置文件
      • 2、PEFT 步骤2 创建模型
    • 步骤5 配置训练参数
    • 步骤6 创建训练器
    • 步骤7 模型训练
    • 步骤8 模型推理
  • 十、主路合并旁路
    • 1、加载基础模型
    • 2、加载LoRA模型
    • 3、模型推理
    • 4、模型合并
    • 5、模型推理
    • 6、完整模型保存
  • 总结


前言

在自然语言处理领域,大语言模型的预训练-微调技术已经成为一种常见的方法。其中,LoRA(Low-Rank Adaptation)是一种新颖的微调技术,通过引入低秩矩阵来调整模型的行为,以提高模型在新任务上的表现。本文将对LoRA的原理、优势以及应用进行详细介绍。

一、微调技术分类

微调技术主要分为以下几类:
1)增加额外参数(A):这种方法是在原有的预训练模型的基础上增加一些额外的参数,以改变模型的行为。
2)选取一部分参数更新(S):这种方法是在微调过程中只更新模型的一部分参数,而不是所有参数。这可以减少计算量,提高微调效率。
3)引入重参数化(R):这种方法是在模型的参数空间中引入一些新的变化,通常是一些线性变换或非线性变换,以改变模型的行为。这种方法可以使模型在新任务上有更好的表现。

常见的参数高效微调技术有Prefix Tuning、Prompt Tuning、P-Tuning、Adapter Tuning、LoRA等
在这里插入图片描述

二、LoRA原理

LoRA(Low-Rank Adaptation:低秩的适配器)是一种新颖的微调技术,它通过引入低秩矩阵来调整模型的行为,以提高模型在新任务上的表现。具体来说,LoRA在原有的预训练模型中增加了两个旁路矩阵A和B,这两个矩阵的维度远小于原始模型的输入输出维度,从而实现了参数的高效微调。
在这里插入图片描述

三、在哪儿增加旁路

在原有的预训练模型中,可以选择在任意两个相邻层之间增加旁路矩阵A和B。这样,模型在前向传播过程中,可以通过这两个旁路矩阵来引入新的信息,从而改变模型的行为。
在这里插入图片描述

四、为什么微调少量参数就可以

在这里插入图片描述
A的输入维度和B的输出维度分别与原始模型的输入输出维度相同,而A的输出维度和B的输入维度是一个远小于原始模型输入输出维度的值,这就是low-rank的体现,可以极大地减少待训练的参数
在这里插入图片描述

表示的是矩阵的信息量,这里的“”特指引入的旁路矩阵的规模,即它们的行数和列数。
在这里插入图片描述

在LoRA技术中,我们通过引入低秩矩阵来调整预训练模型的行为,同时保留大部分原有的参数不变。这样做可以在不牺牲太多性能的前提下,显著降低模型微调时的计算成本和内存需求。

通俗化解释:“秩”:
想象一下你有一个很大的包裹,你需要通过一个小门把它送出去。但是门太小了,你必须把包裹拆成几个小包裹才能通过。在这个比喻中,大包裹就像模型的权重矩阵,小门就像我们新增的低秩矩阵,而“秩”就是这些小包裹的数量。在LoRA中,我们通过创建一些小的(低秩)矩阵来传递信息,而不是使用原始的大矩阵。这样做的好处是我们可以只关注那些最重要的信息,忽略掉不重要的信息,从而减少计算量和内存需求。

五、如何对A和B进行初始化

A和B如何初始化?
对A采用高斯初始化,对B采用零初始化的目的是,让训练刚开始时的值为0,这样不会给模型带来额外的噪声。

在这里插入图片描述

六、增加旁路会增加推理时间吗?

虽然增加了旁路矩阵A和B,但是由于它们的维度远小于原始模型的输入输出维度,因此在推理过程中,计算量的增加是非常有限的。
在这里插入图片描述

七、R值为多少合适

R值表示的是旁路矩阵A和B的秩。一般来说,R值的选择需要根据具体任务和模型结构来确定。在实际应用中,可以尝试不同的R值,以找到最佳的设置。

在这里插入图片描述

八、如何注入LoRA

要将LoRA应用于现有的预训练模型中,首先需要在相邻层之间插入旁路矩阵A和B。然后,在微调过程中,只需要调整这两个旁路矩阵的参数即可。这样,就可以实现模型行为的高效调整。
在这里插入图片描述

如上图中定义一个简单的3层的神经网络,在第1层增加旁路后效果如下:
在这里插入图片描述

九、LoRA代码实践

PEFT文档资料地址
1)文档地址:https://huggingface.co/docs/peft/index
2)Github地址:https://github.com/huggingface/peft
PEFT(Parameter-Efficient Fine-Tuning)库是一个用于参数高效微调预训练语言模型的库,旨在降低大规模模型微调的计算和存储成本。
PEFT库的核心优势在于它能够仅通过微调少量额外模型参数来适应各种下游任务,避免了对整个大模型参数进行微调的需求。这种方法不仅降低了资源消耗,而且在很多情况下能达到与完全微调相当的性能
在这里插入图片描述

PEFT技术的支持:
在这里插入图片描述

学术资源加速

方便从huggingface下载模型,这云平台autodl提供的,仅适用于autodl。

import subprocess
import os

result = subprocess.run('bash -c "source /etc/network_turbo && env | grep proxy"', shell=True, capture_output=True, text=True)
output = result.stdout
for line in output.splitlines():
    if '=' in line:
        var, value = line.split('=', 1)
        os.environ[var] = value

步骤1 导入相关包

开始之前,我们需要导入适用于模型训练和推理的必要库,如transformers。

from datasets import Dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq, TrainingArguments, Trainer

步骤2 加载数据集

使用适当的数据加载器,例如datasets库,来加载预处理过的指令遵循性任务数据集。

ds = Dataset.load_from_disk("/root/tuning/lesson01/data/alpaca_data_zh/")
ds

输出

Dataset({
    features: ['output', 'input', 'instruction'],
    num_rows: 26858
})

数据查看

ds[:1]

输出

{'output': ['以下是保持健康的三个提示:\n\n1. 保持身体活动。每天做适当的身体运动,如散步、跑步或游泳,能促进心血管健康,增强肌肉力量,并有助于减少体重。\n\n2. 均衡饮食。每天食用新鲜的蔬菜、水果、全谷物和脂肪含量低的蛋白质食物,避免高糖、高脂肪和加工食品,以保持健康的饮食习惯。\n\n3. 睡眠充足。睡眠对人体健康至关重要,成年人每天应保证 7-8 小时的睡眠。良好的睡眠有助于减轻压力,促进身体恢复,并提高注意力和记忆力。'],
 'input': [''],
 'instruction': ['保持健康的三个提示。']}

步骤3 数据集预处理

利用预训练模型的分词器(Tokenizer)对原始文本进行编码,并生成相应的输入ID、注意力掩码和标签。
1)获取分词器

tokenizer = AutoTokenizer.from_pretrained("Langboat/bloom-1b4-zh")
tokenizer

在这里插入图片描述

输出:

BloomTokenizerFast(name_or_path='Langboat/bloom-1b4-zh', vocab_size=46145, model_max_length=1000000000000000019884624838656, is_fast=True, padding_side='left', truncation_side='right', special_tokens={'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '<pad>'}, clean_up_tokenization_spaces=False),  added_tokens_decoder={
	0: AddedToken("<unk>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
	1: AddedToken("<s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
	2: AddedToken("</s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
	3: AddedToken("<pad>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
}

2)定义数据处理函数

def process_func(example):
    # 设置最大长度为256
    MAX_LENGTH = 256
    # 初始化输入ID、注意力掩码和标签列表
    input_ids, attention_mask, labels = [], [], []
    # 对指令和输入进行编码
    instruction = tokenizer("\n".join(["Human: " + example["instruction"], example["input"]]).strip() + "\n\nAssistant: ")
    # 对输出进行编码,并添加结束符
    response = tokenizer(example["output"] + tokenizer.eos_token)
    # 将指令和响应的输入ID拼接起来
    input_ids = instruction["input_ids"] + response["input_ids"]
    # 将指令和响应的注意力掩码拼接起来
    attention_mask = instruction["attention_mask"] + response["attention_mask"]
    # 将指令的标签设置为-100,表示不计算损失;将响应的输入ID作为标签
    labels = [-100] * len(instruction["input_ids"]) + response["input_ids"]
    # 如果输入ID的长度超过最大长度,截断输入ID、注意力掩码和标签
    if len(input_ids) > MAX_LENGTH:
        input_ids = input_ids[:MAX_LENGTH]
        attention_mask = attention_mask[:MAX_LENGTH]
        labels = labels[:MAX_LENGTH]
    # 返回处理后的数据
    return {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
        "labels": labels
    }

3)对数据进行预处理

tokenized_ds = ds.map(process_func, remove_columns=ds.column_names)
tokenized_ds

输出:

Dataset({
    features: ['input_ids', 'attention_mask', 'labels'],
    num_rows: 26858
})

步骤4 创建模型

然后,我们实例化一个预训练模型,这个模型将作为微调的基础。对于大型模型,我们可能还需要进行一些特定的配置,以适应可用的计算资源。

#这行代码从Hugging Face Model Hub加载了一个预训练的Bloom模型,模型名称为"Langboat/bloom-1b4-zh",并且设置了low_cpu_mem_usage=True以减少CPU内存使用。
model = AutoModelForCausalLM.from_pretrained("Langboat/bloom-1b4-zh", low_cpu_mem_usage=True)

查看总共有哪些层,可以基于这些层添加LoRA

for name, parameter in model.named_parameters():
    print(name)

输出

base_model.model.transformer.word_embeddings.weight
base_model.model.transformer.word_embeddings_layernorm.weight
base_model.model.transformer.word_embeddings_layernorm.bias
base_model.model.transformer.h.0.input_layernorm.weight
base_model.model.transformer.h.0.input_layernorm.bias
base_model.model.transformer.h.0.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.0.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.0.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.0.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.0.self_attention.dense.weight
base_model.model.transformer.h.0.self_attention.dense.bias
base_model.model.transformer.h.0.post_attention_layernorm.weight
base_model.model.transformer.h.0.post_attention_layernorm.bias
base_model.model.transformer.h.0.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.0.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.0.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.0.mlp.dense_4h_to_h.bias
base_model.model.transformer.h.1.input_layernorm.weight
base_model.model.transformer.h.1.input_layernorm.bias
base_model.model.transformer.h.1.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.1.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.1.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.1.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.1.self_attention.dense.weight
base_model.model.transformer.h.1.self_attention.dense.bias
base_model.model.transformer.h.1.post_attention_layernorm.weight
base_model.model.transformer.h.1.post_attention_layernorm.bias
base_model.model.transformer.h.1.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.1.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.1.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.1.mlp.dense_4h_to_h.bias
base_model.model.transformer.h.2.input_layernorm.weight
base_model.model.transformer.h.2.input_layernorm.bias
base_model.model.transformer.h.2.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.2.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.2.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.2.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.2.self_attention.dense.weight
base_model.model.transformer.h.2.self_attention.dense.bias
base_model.model.transformer.h.2.post_attention_layernorm.weight
base_model.model.transformer.h.2.post_attention_layernorm.bias
base_model.model.transformer.h.2.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.2.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.2.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.2.mlp.dense_4h_to_h.bias
base_model.model.transformer.h.3.input_layernorm.weight
base_model.model.transformer.h.3.input_layernorm.bias
base_model.model.transformer.h.3.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.3.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.3.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.3.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.3.self_attention.dense.weight
base_model.model.transformer.h.3.self_attention.dense.bias
base_model.model.transformer.h.3.post_attention_layernorm.weight
base_model.model.transformer.h.3.post_attention_layernorm.bias
base_model.model.transformer.h.3.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.3.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.3.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.3.mlp.dense_4h_to_h.bias
base_model.model.transformer.h.4.input_layernorm.weight
base_model.model.transformer.h.4.input_layernorm.bias
base_model.model.transformer.h.4.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.4.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.4.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.4.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.4.self_attention.dense.weight
base_model.model.transformer.h.4.self_attention.dense.bias
base_model.model.transformer.h.4.post_attention_layernorm.weight
base_model.model.transformer.h.4.post_attention_layernorm.bias
base_model.model.transformer.h.4.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.4.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.4.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.4.mlp.dense_4h_to_h.bias
base_model.model.transformer.h.5.input_layernorm.weight
base_model.model.transformer.h.5.input_layernorm.bias
base_model.model.transformer.h.5.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.5.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.5.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.5.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.5.self_attention.dense.weight
base_model.model.transformer.h.5.self_attention.dense.bias
base_model.model.transformer.h.5.post_attention_layernorm.weight
base_model.model.transformer.h.5.post_attention_layernorm.bias
base_model.model.transformer.h.5.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.5.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.5.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.5.mlp.dense_4h_to_h.bias
base_model.model.transformer.h.6.input_layernorm.weight
base_model.model.transformer.h.6.input_layernorm.bias
base_model.model.transformer.h.6.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.6.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.6.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.6.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.6.self_attention.dense.weight
base_model.model.transformer.h.6.self_attention.dense.bias
base_model.model.transformer.h.6.post_attention_layernorm.weight
base_model.model.transformer.h.6.post_attention_layernorm.bias
base_model.model.transformer.h.6.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.6.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.6.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.6.mlp.dense_4h_to_h.bias
base_model.model.transformer.h.7.input_layernorm.weight
base_model.model.transformer.h.7.input_layernorm.bias
base_model.model.transformer.h.7.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.7.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.7.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.7.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.7.self_attention.dense.weight
base_model.model.transformer.h.7.self_attention.dense.bias
base_model.model.transformer.h.7.post_attention_layernorm.weight
base_model.model.transformer.h.7.post_attention_layernorm.bias
base_model.model.transformer.h.7.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.7.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.7.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.7.mlp.dense_4h_to_h.bias
base_model.model.transformer.h.8.input_layernorm.weight
base_model.model.transformer.h.8.input_layernorm.bias
base_model.model.transformer.h.8.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.8.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.8.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.8.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.8.self_attention.dense.weight
base_model.model.transformer.h.8.self_attention.dense.bias
base_model.model.transformer.h.8.post_attention_layernorm.weight
base_model.model.transformer.h.8.post_attention_layernorm.bias
base_model.model.transformer.h.8.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.8.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.8.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.8.mlp.dense_4h_to_h.bias
base_model.model.transformer.h.9.input_layernorm.weight
base_model.model.transformer.h.9.input_layernorm.bias
base_model.model.transformer.h.9.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.9.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.9.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.9.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.9.self_attention.dense.weight
base_model.model.transformer.h.9.self_attention.dense.bias
base_model.model.transformer.h.9.post_attention_layernorm.weight
base_model.model.transformer.h.9.post_attention_layernorm.bias
base_model.model.transformer.h.9.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.9.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.9.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.9.mlp.dense_4h_to_h.bias
base_model.model.transformer.h.10.input_layernorm.weight
base_model.model.transformer.h.10.input_layernorm.bias
base_model.model.transformer.h.10.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.10.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.10.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.10.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.10.self_attention.dense.weight
base_model.model.transformer.h.10.self_attention.dense.bias
base_model.model.transformer.h.10.post_attention_layernorm.weight
base_model.model.transformer.h.10.post_attention_layernorm.bias
base_model.model.transformer.h.10.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.10.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.10.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.10.mlp.dense_4h_to_h.bias
base_model.model.transformer.h.11.input_layernorm.weight
base_model.model.transformer.h.11.input_layernorm.bias
base_model.model.transformer.h.11.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.11.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.11.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.11.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.11.self_attention.dense.weight
base_model.model.transformer.h.11.self_attention.dense.bias
base_model.model.transformer.h.11.post_attention_layernorm.weight
base_model.model.transformer.h.11.post_attention_layernorm.bias
base_model.model.transformer.h.11.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.11.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.11.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.11.mlp.dense_4h_to_h.bias
base_model.model.transformer.h.12.input_layernorm.weight
base_model.model.transformer.h.12.input_layernorm.bias
base_model.model.transformer.h.12.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.12.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.12.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.12.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.12.self_attention.dense.weight
base_model.model.transformer.h.12.self_attention.dense.bias
base_model.model.transformer.h.12.post_attention_layernorm.weight
base_model.model.transformer.h.12.post_attention_layernorm.bias
base_model.model.transformer.h.12.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.12.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.12.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.12.mlp.dense_4h_to_h.bias
base_model.model.transformer.h.13.input_layernorm.weight
base_model.model.transformer.h.13.input_layernorm.bias
base_model.model.transformer.h.13.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.13.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.13.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.13.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.13.self_attention.dense.weight
base_model.model.transformer.h.13.self_attention.dense.bias
base_model.model.transformer.h.13.post_attention_layernorm.weight
base_model.model.transformer.h.13.post_attention_layernorm.bias
base_model.model.transformer.h.13.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.13.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.13.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.13.mlp.dense_4h_to_h.bias
base_model.model.transformer.h.14.input_layernorm.weight
base_model.model.transformer.h.14.input_layernorm.bias
base_model.model.transformer.h.14.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.14.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.14.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.14.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.14.self_attention.dense.weight
base_model.model.transformer.h.14.self_attention.dense.bias
base_model.model.transformer.h.14.post_attention_layernorm.weight
base_model.model.transformer.h.14.post_attention_layernorm.bias
base_model.model.transformer.h.14.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.14.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.14.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.14.mlp.dense_4h_to_h.bias
base_model.model.transformer.h.15.input_layernorm.weight
base_model.model.transformer.h.15.input_layernorm.bias
base_model.model.transformer.h.15.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.15.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.15.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.15.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.15.self_attention.dense.weight
base_model.model.transformer.h.15.self_attention.dense.bias
base_model.model.transformer.h.15.post_attention_layernorm.weight
base_model.model.transformer.h.15.post_attention_layernorm.bias
base_model.model.transformer.h.15.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.15.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.15.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.15.mlp.dense_4h_to_h.bias
base_model.model.transformer.h.16.input_layernorm.weight
base_model.model.transformer.h.16.input_layernorm.bias
base_model.model.transformer.h.16.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.16.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.16.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.16.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.16.self_attention.dense.weight
base_model.model.transformer.h.16.self_attention.dense.bias
base_model.model.transformer.h.16.post_attention_layernorm.weight
base_model.model.transformer.h.16.post_attention_layernorm.bias
base_model.model.transformer.h.16.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.16.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.16.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.16.mlp.dense_4h_to_h.bias
base_model.model.transformer.h.17.input_layernorm.weight
base_model.model.transformer.h.17.input_layernorm.bias
base_model.model.transformer.h.17.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.17.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.17.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.17.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.17.self_attention.dense.weight
base_model.model.transformer.h.17.self_attention.dense.bias
base_model.model.transformer.h.17.post_attention_layernorm.weight
base_model.model.transformer.h.17.post_attention_layernorm.bias
base_model.model.transformer.h.17.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.17.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.17.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.17.mlp.dense_4h_to_h.bias
base_model.model.transformer.h.18.input_layernorm.weight
base_model.model.transformer.h.18.input_layernorm.bias
base_model.model.transformer.h.18.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.18.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.18.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.18.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.18.self_attention.dense.weight
base_model.model.transformer.h.18.self_attention.dense.bias
base_model.model.transformer.h.18.post_attention_layernorm.weight
base_model.model.transformer.h.18.post_attention_layernorm.bias
base_model.model.transformer.h.18.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.18.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.18.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.18.mlp.dense_4h_to_h.bias
base_model.model.transformer.h.19.input_layernorm.weight
base_model.model.transformer.h.19.input_layernorm.bias
base_model.model.transformer.h.19.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.19.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.19.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.19.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.19.self_attention.dense.weight
base_model.model.transformer.h.19.self_attention.dense.bias
base_model.model.transformer.h.19.post_attention_layernorm.weight
base_model.model.transformer.h.19.post_attention_layernorm.bias
base_model.model.transformer.h.19.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.19.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.19.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.19.mlp.dense_4h_to_h.bias
base_model.model.transformer.h.20.input_layernorm.weight
base_model.model.transformer.h.20.input_layernorm.bias
base_model.model.transformer.h.20.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.20.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.20.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.20.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.20.self_attention.dense.weight
base_model.model.transformer.h.20.self_attention.dense.bias
base_model.model.transformer.h.20.post_attention_layernorm.weight
base_model.model.transformer.h.20.post_attention_layernorm.bias
base_model.model.transformer.h.20.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.20.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.20.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.20.mlp.dense_4h_to_h.bias
base_model.model.transformer.h.21.input_layernorm.weight
base_model.model.transformer.h.21.input_layernorm.bias
base_model.model.transformer.h.21.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.21.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.21.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.21.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.21.self_attention.dense.weight
base_model.model.transformer.h.21.self_attention.dense.bias
base_model.model.transformer.h.21.post_attention_layernorm.weight
base_model.model.transformer.h.21.post_attention_layernorm.bias
base_model.model.transformer.h.21.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.21.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.21.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.21.mlp.dense_4h_to_h.bias
base_model.model.transformer.h.22.input_layernorm.weight
base_model.model.transformer.h.22.input_layernorm.bias
base_model.model.transformer.h.22.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.22.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.22.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.22.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.22.self_attention.dense.weight
base_model.model.transformer.h.22.self_attention.dense.bias
base_model.model.transformer.h.22.post_attention_layernorm.weight
base_model.model.transformer.h.22.post_attention_layernorm.bias
base_model.model.transformer.h.22.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.22.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.22.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.22.mlp.dense_4h_to_h.bias
base_model.model.transformer.h.23.input_layernorm.weight
base_model.model.transformer.h.23.input_layernorm.bias
base_model.model.transformer.h.23.self_attention.query_key_value.base_layer.weight
base_model.model.transformer.h.23.self_attention.query_key_value.base_layer.bias
base_model.model.transformer.h.23.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.h.23.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.h.23.self_attention.dense.weight
base_model.model.transformer.h.23.self_attention.dense.bias
base_model.model.transformer.h.23.post_attention_layernorm.weight
base_model.model.transformer.h.23.post_attention_layernorm.bias
base_model.model.transformer.h.23.mlp.dense_h_to_4h.weight
base_model.model.transformer.h.23.mlp.dense_h_to_4h.bias
base_model.model.transformer.h.23.mlp.dense_4h_to_h.weight
base_model.model.transformer.h.23.mlp.dense_4h_to_h.bias
base_model.model.transformer.ln_f.weight
base_model.model.transformer.ln_f.bias

LoRA相关的配置(下面2个部分是LoRA相关的配置,其他的和全量微调代码一样)。

1、PEFT 步骤1 配置文件

在使用PEFT进行微调时,我们首先需要创建一个配置文件,该文件定义了微调过程中的各种设置,如学习率调度、优化器选择等。

from peft import LoraConfig, TaskType, get_peft_model
config = LoraConfig(task_type=TaskType.CAUSAL_LM)
##也可以不使用默认的,自己指定, 目标层 target_modules=["query_key_value"],秩 r=8
#config = LoraConfig(task_type=TaskType.CAUSAL_LM,r=8, target_modules=['query_key_value','dense_4h_to_h'])
config

2、PEFT 步骤2 创建模型

接下来,我们使用PEFT和预训练模型来创建一个微调模型。这个模型将包含原始的预训练模型以及由PEFT引入的低秩参数。

model = get_peft_model(model, config)
model

输出:

PeftModelForCausalLM(
  (base_model): LoraModel(
    (model): PeftModelForCausalLM(
      (base_model): LoraModel(
        (model): BloomForCausalLM(
          (transformer): BloomModel(
            (word_embeddings): Embedding(46145, 2048)
            (word_embeddings_layernorm): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)
            (h): ModuleList(
              (0-23): 24 x BloomBlock(
                (input_layernorm): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)
                (self_attention): BloomAttention(
                  (query_key_value): lora.Linear(
                    (base_layer): Linear(in_features=2048, out_features=6144, bias=True)
                    (lora_dropout): ModuleDict(
                      (default): Identity()
                    )
                    (lora_A): ModuleDict(
                      (default): Linear(in_features=2048, out_features=8, bias=False)
                    )
                    (lora_B): ModuleDict(
                      (default): Linear(in_features=8, out_features=6144, bias=False)
                    )
                    (lora_embedding_A): ParameterDict()
                    (lora_embedding_B): ParameterDict()
                  )
                  (dense): Linear(in_features=2048, out_features=2048, bias=True)
                  (attention_dropout): Dropout(p=0.0, inplace=False)
                )
                (post_attention_layernorm): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)
                (mlp): BloomMLP(
                  (dense_h_to_4h): Linear(in_features=2048, out_features=8192, bias=True)
                  (gelu_impl): BloomGelu()
                  (dense_4h_to_h): lora.Linear(
                    (base_layer): Linear(in_features=8192, out_features=2048, bias=True)
                    (lora_dropout): ModuleDict(
                      (default): Identity()
                    )
                    (lora_A): ModuleDict(
                      (default): Linear(in_features=8192, out_features=8, bias=False)
                    )
                    (lora_B): ModuleDict(
                      (default): Linear(in_features=8, out_features=2048, bias=False)
                    )
                    (lora_embedding_A): ParameterDict()
                    (lora_embedding_B): ParameterDict()
                  )
                )
              )
            )
            (ln_f): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)
          )
          (lm_head): Linear(in_features=2048, out_features=46145, bias=False)
        )
      )
    )
  )
)

查看配置

config

输出

LoraConfig(peft_type=<PeftType.LORA: 'LORA'>, auto_mapping=None, base_model_name_or_path=None, revision=None, task_type=<TaskType.CAUSAL_LM: 'CAUSAL_LM'>, inference_mode=False, r=8, target_modules={'query_key_value', 'dense_4h_to_h'}, lora_alpha=8, lora_dropout=0.0, fan_in_fan_out=False, bias='none', modules_to_save=None, init_lora_weights=True, layers_to_transform=None, layers_pattern=None, rank_pattern={}, alpha_pattern={}, megatron_config=None, megatron_core='megatron.core', loftq_config={})

步骤5 配置训练参数

定义训练参数,包括输出目录、学习率、批次大小、梯度累积步数、优化器选择等。

args = TrainingArguments(
    output_dir="/root/autodl-tmp/tuningdata/lora",# 指定模型训练结果的输出目录。
    per_device_train_batch_size=4, # 指定每个设备(如GPU)上的批次大小
    gradient_accumulation_steps=8,# 指定梯度累积步数。在本例子中,每8个步骤进行一次梯度更新。
    logging_steps=20, #指定日志记录的频率。在本例子中,每20个步骤记录一次日志
    num_train_epochs=4 #指定训练的总轮数
)

步骤6 创建训练器

最后,我们创建一个训练器实例,它封装了训练循环。训练器将负责运行训练过程,并根据我们之前定义的参数进行优化。

trainer = Trainer(
    model=model,#指定训练模型
    args=args, #指定训练参数
    train_dataset=tokenized_ds, #指定数据集
    data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True) #指定数据收集器。其中tokenizer是分词器,padding=True表示对输入进行填充以保持批次大小一致。
)

步骤7 模型训练

通过调用训练器的train()方法,我们启动模型的训练过程。

trainer.train()

步骤8 模型推理

训练完成后,我们可以使用训练好的模型进行推理。这通常涉及到使用模型的inference方法,输入经过适当处理的问题,并得到模型的输出。

from transformers import pipeline

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)

ipt = "Human: {}\n{}".format("如何写好一个简历?", "").strip() + "\n\nAssistant: "
pipe(ipt, max_length=256, do_sample=True, )

输出

[{'generated_text': 'Human: 如何写好一个简历?\n\nAssistant: 一篇好的简历应包含以下内容:个人信息(姓名,出生日期,出生地,教育经历,工作经历)、求职理由、个人能力(如语言能力,英语水平,操作技能,编程能力,市场营销能力,分析归纳能力等)、学习经历、实践经历和经验、荣誉奖项、相关证书和荣誉、个人兴趣爱好以及在工作中遇到的瓶颈和障碍。\n\n在书写时,应注意文字简洁、条理清晰,突出重点,语言流畅。您也可以在简历中附上一些相关的个人照片或照片资料以供他人参考。如果您有任何疑问,请随时与我联系。'}]

十、主路合并旁路

1、加载基础模型

from transformers import AutoModelForCausalLM, AutoTokenizer

from peft import PeftModel

model = AutoModelForCausalLM.from_pretrained("Langboat/bloom-1b4-zh", low_cpu_mem_usage=True)
tokenizer = AutoTokenizer.from_pretrained("Langboat/bloom-1b4-zh")

2、加载LoRA模型

p_model = PeftModel.from_pretrained(model, model_id="/root/autodl-tmp/tuningdata/lora/checkpoint-500")
p_model

输出

PeftModelForCausalLM(
  (base_model): LoraModel(
    (model): BloomForCausalLM(
      (transformer): BloomModel(
        (word_embeddings): Embedding(46145, 2048)
        (word_embeddings_layernorm): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)
        (h): ModuleList(
          (0-23): 24 x BloomBlock(
            (input_layernorm): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)
            (self_attention): BloomAttention(
              (query_key_value): lora.Linear(
                (base_layer): Linear(in_features=2048, out_features=6144, bias=True)
                (lora_dropout): ModuleDict(
                  (default): Identity()
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=2048, out_features=8, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=8, out_features=6144, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (dense): Linear(in_features=2048, out_features=2048, bias=True)
              (attention_dropout): Dropout(p=0.0, inplace=False)
            )
            (post_attention_layernorm): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)
            (mlp): BloomMLP(
              (dense_h_to_4h): Linear(in_features=2048, out_features=8192, bias=True)
              (gelu_impl): BloomGelu()
              (dense_4h_to_h): lora.Linear(
                (base_layer): Linear(in_features=8192, out_features=2048, bias=True)
                (lora_dropout): ModuleDict(
                  (default): Identity()
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=8192, out_features=8, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=8, out_features=2048, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
            )
          )
        )
        (ln_f): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)
      )
      (lm_head): Linear(in_features=2048, out_features=46145, bias=False)
    )
  )
)

3、模型推理

from transformers import pipeline

pipe = pipeline("text-generation", model=p_model, tokenizer=tokenizer, device=0)
ipt = "Human: {}\n{}".format("如何写好一个简历?", "").strip() + "\n\nAssistant: "
pipe(ipt, max_length=256, do_sample=True, )

4、模型合并

merge_model = p_model.merge_and_unload()
merge_model

输出

BloomForCausalLM(
  (transformer): BloomModel(
    (word_embeddings): Embedding(46145, 2048)
    (word_embeddings_layernorm): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)
    (h): ModuleList(
      (0-23): 24 x BloomBlock(
        (input_layernorm): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)
        (self_attention): BloomAttention(
          (query_key_value): Linear(in_features=2048, out_features=6144, bias=True)
          (dense): Linear(in_features=2048, out_features=2048, bias=True)
          (attention_dropout): Dropout(p=0.0, inplace=False)
        )
        (post_attention_layernorm): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)
        (mlp): BloomMLP(
          (dense_h_to_4h): Linear(in_features=2048, out_features=8192, bias=True)
          (gelu_impl): BloomGelu()
          (dense_4h_to_h): Linear(in_features=8192, out_features=2048, bias=True)
        )
      )
    )
    (ln_f): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)
  )
  (lm_head): Linear(in_features=2048, out_features=46145, bias=False)
)

5、模型推理

from transformers import pipeline

pipe = pipeline("text-generation", model=merge_model, tokenizer=tokenizer, device=0)
ipt = "Human:如何写好一个简历?\n\nAssistant: "
pipe(ipt, max_length=256,)

6、完整模型保存

模型训练完后,可以将合并的模型进行保存到本地,进行备用

merge_model.save_pretrained("/root/autodl-tmp/tuningdata/merge_model")

总结

LoRA是一种新颖的微调技术,通过引入低秩矩阵来调整模型的行为,以提高模型在新任务上的表现。它具有参数高效、计算复杂度低等优点,因此在自然语言处理领域具有广泛的应用前景。

在这里插入图片描述

🎯🔖更多专栏系列文章:AIGC-AI大模型探索之路

如果文章内容对您有所触动,别忘了点赞、⭐关注,收藏!加入我,让我们携手同行AI的探索之旅,一起开启智能时代的大门!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/601263.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

测试平台开发:Django开发实战之注册界面实现(上)

实现注册功能&#xff0c;大概包括以下几个步骤 1、设计ui ##字段 通过看数据库里面的user表里面的字段&#xff0c;可以大概知道需要几个字段&#xff1a; emailusernamepasswordpassword_confirm 生成简单的ui界面&#xff0c;复制这个html代码 然后在项目路径下面创建一…

22_Scala集合Seq

文章目录 Seq序列1.构建集合2.List集合元素拼接&&集合拼接3.可变Seq&&List3.1 ListBuffer创建3.2 增删改查3.3 相互转化 Appendix1.Scala起别名2.Seq底层3.关于运算符操作: :4.空集合的表示 Seq序列 –Seq表示有序&#xff0c;数据可重复的集合 1.构建集合 …

整体安全保障服务方案包括哪些方面?

整体安全保障服务方案是一套综合性的措施&#xff0c;旨在保护企业的网络、数据和资源免受各种威胁。主要包含检测、加固、应急保障、安全运营、攻防演练等多项核心能力与服务。 ​安全狗通过专业团队、工具以及专业运营流程&#xff0c;提出了新一代整体安全保障思路&#xff…

开源代码分享(28)-含分布式光伏的配电网集群划分和集群电压协调控制

参考文献&#xff1a; [1] Chai Y , Guo L , Wang C ,et al.Network Partition and Voltage Coordination Control for Distribution Networks With High Penetration of Distributed PV Units[J].IEEE Transactions on Power Systems, 2018:3396-3407.DOI:10.1109/TPWRS.2018…

【深度学习】实验1 波士顿房价预测

波士顿房价预测 代码 import numpy as np import matplotlib.pyplot as pltdef load_data():# 1.从文件导入数据datafile D:\Python\PythonProject\sklearn\housing.datadata np.fromfile(datafile, sep )# 每条数据包括14项&#xff0c;其中前面13项是影响因素&#xff0c…

长方形盒子能容纳定宽的长方形物体最大长度

问题 已知长方形盒子长度a和宽度b&#xff0c;放入一宽度w的长方形物体&#xff0c;求长方形物体最大长度L。 答案 MS Excel公式如下&#xff08;其中B1a&#xff0c;B2b&#xff0c;B3w&#xff09;&#xff1a; L SQRT(B1^2B2^2)-B1*B2*B3*2/(B1^2B2^2)注意 当求得 L ≤…

时间复杂度与空间复杂度(上篇)

目录 前言时间复杂度 前言 算法在运行的过程中要消耗时间资源和空间资源 所以衡量一个算法的好坏要看空间复杂度和时间复杂度&#xff0c; 时间复杂度衡量一个算法的运行快慢 空间复杂度是一个算法运行所需要的额外的空间 一个算法中我们更关心的是时间复杂度 时间复杂度 时…

使用idea管理docker

写在前面 其实idea也提供了docker的管理功能&#xff0c;比如查看容器列表&#xff0c;启动容器&#xff0c;停止容器等&#xff0c;本文来看下如何管理本地的docker daemon和远程的dockers daemon。 1&#xff1a;管理本地 双击shift&#xff0c;录入service&#xff1a; …

24年审计师报名时间汇总所需材料提前准备

2024审计师报名本周开始&#xff08;5月10日起&#xff09;&#xff0c;各地报名时间不一&#xff0c;报名指南整理好了&#xff01; ✅全国报名时间汇总报名费用资格审核&#xff1a;P1~P2。 ✅2024年审计师考试科目&#xff1a; 《审计相关基础知识》和《审计理论与实务》 ✅…

如何创建微信小程序?只需3步完成小程序制作

微信&#xff0c;中国最大的社交媒体应用程序&#xff0c;几个月前推出了微信小程序&#xff0c;这一神奇的功能立即大受欢迎。这些小程序让在中国注册的商业实体所有者创建一个小程序来与微信用户互动。这些小程序不需要在用户手机上进行任何安装&#xff0c;只需通过微信应用…

HP Z620 服务器打开VTx虚拟技术

在使用Virtual Box的时候&#xff0c;虚拟主机启动报错&#xff1a;提示需要VTx。于是到bios里面去设置VTx。 这里有个小坑&#xff0c;就是HP 的bios配置里面&#xff0c;VTx不在常规的“System Configuration”、“Advanced”等地方&#xff0c;而是在“Security”菜单里&…

关于2024年上半年软考考试批次安排的通告

按照《2024年计算机技术与软件专业技术资格&#xff08;水平&#xff09;考试工作安排及有关事项的通知》&#xff08;计考办〔2024〕1号&#xff09;文件精神&#xff0c;结合各地机位实际&#xff0c;现将2024年上半年计算机软件资格考试有关安排通告如下&#xff1a; 一、考…

【排序算法】之冒泡排序

一、算法介绍 冒泡排序&#xff08;Bubble Sort&#xff09;是一种基础的排序算法&#xff0c;它的主要思想是通过重复遍历待排序的列表&#xff0c;比较每对相邻的元素并根据需要交换它们&#xff0c;使得每一遍遍历都能将未排序的最大&#xff08;或最小&#xff09;元素“冒…

RH 414膜电位荧光探针,161433-30-3,具有出色的荧光性质和高度专业化的反应原理

一、试剂信息 名称&#xff1a;RH 414膜电位荧光探针CAS号&#xff1a;161433-30-3结构式&#xff1a; 二、试剂内容 RH 414膜电位荧光探针是一种基于荧光共振能量转移&#xff08;FRET&#xff09;技术的荧光染料&#xff0c;具有出色的荧光性质和高度专业化的反应原理。…

Cordova 12 Android 不支持 http 原因探索

最近在升级 Cordova 到最新版本&#xff0c;升级完成后发现无法请求网络&#xff0c;研究了两次最终发现解决方案。 发现控制台中有日志输出&#xff0c;提示当前是 https &#xff0c;无法直接访问 http。 [INFO:CONSOLE(225)] "Mixed Content: The page at https://lo…

如何更好地使用Kafka? - 运行监控篇

要确保Kafka在使用过程中的稳定性&#xff0c;需要从kafka在业务中的使用周期进行依次保障。主要可以分为&#xff1a;事先预防&#xff08;通过规范的使用、开发&#xff0c;预防问题产生&#xff09;、运行时监控&#xff08;保障集群稳定&#xff0c;出问题能及时发现&#…

tf2使用savemodel保存之后转化为onnx适合进行om模型部署

tf2使用savemodel保存之后转化为onnx适合进行om模型部署 tf保存为kears框架h5文件将h5转化为savemodel格式&#xff0c;方便部署查看模型架构将savemodel转化为onnx格式使用netrononnx模型细微处理代码转化为om以及推理代码&#xff0c;要么使用midstudio tf保存为kears框架h5文…

设计严谨,思路绝妙!这篇高级孟德尔随机化研究:药靶、共定位,发文一区(IF=8.9)!...

现在越来越多的学者在用孟德尔随机化高级方法发文&#xff0c;今天我们看的这篇这篇药靶孟德尔随机化&#xff0c;还用了共定位分析方法&#xff0c;亮点在于它的设计严谨&#xff0c;思路绝妙&#xff0c;一起看下去吧&#xff01; 2024年4月21日&#xff0c;四川大学华西医院…

机器人码垛机的主体结构及技术特点

在现代物流和生产线上&#xff0c;机器人码垛机以其高效、准确的特点&#xff0c;成为了不可或缺的重要设备。那么&#xff0c;这个神奇的机器人究竟由哪些部分组成?它的内部结构又有哪些奥秘呢?接下来&#xff0c;就让我们一起揭开它的神秘面纱! 一、机器人码垛机的主体结构…

每日OJ题_贪心算法三②_力扣553. 最优除法

目录 力扣553. 最优除法 解析代码 力扣553. 最优除法 553. 最优除法 难度 中等 给定一正整数数组 nums&#xff0c;nums 中的相邻整数将进行浮点除法。例如&#xff0c; [2,3,4] -> 2 / 3 / 4 。 例如&#xff0c;nums [2,3,4]&#xff0c;我们将求表达式的值 "…